Position - , rotation - , scale - , and orientation - invariant multiple object recognition from cluttered scenes

نویسندگان

  • Peter Bone
  • Rupert Young
  • Chris Chatwin
چکیده

A method of tracking objects in video sequences despite any kind of perspective distortion is demonstrated. Moving objects are initially segmented from the scene using a background subtraction method to minimize the search area of the filter. A variation on the Maximum Average Correlation Height (MACH) filter is used to create invariance to orientation while giving high tolerance to background clutter and noise. A log r-θ mapping is employed to give invariance to in-plane rotation and scale by transforming rotation and scale variations of the target object into vertical and horizontal shifts. The MACH filter is trained on the log r-θ map of the target for a range of orientations and applied sequentially over the regions of movement in successive video frames. Areas of movement producing a strong correlation response indicate an in-class target and can then be used to determine the position, in-plane rotation and scale of the target objects in the scene and track it over successive frames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SI...

متن کامل

Rotation Invariant Object Recognition from One Training Example

Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance...

متن کامل

Orientation Invariant Features for Multiclass Object Recognition

We present a framework for object recognition based on simple scale and orientation invariant local features that when combined with a hierarchical multiclass boosting mechanism produce robust classifiers for a limited number of object classes in cluttered backgrounds. The system extracts the most relevant features from a set of training samples and builds a hierarchical structure of them. By f...

متن کامل

Object Recognition from Local Scale-Invariant Features

Proc. of the International Conference on Computer Vision, Corfu (Sept. 1999) An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal co...

متن کامل

Viewpoint independent object recognition in cluttered scenes exploiting ray-triangle intersection and SIFT algorithms

Viewpoint independent recognition of free-form objects and estimation of their exact position are a complex procedure with applications in robotics, artificial intelligence, computer vision and many other scientific fields. In this paper a novel approach is presented that addresses recognition of objects lying in highly cluttered and occluded scenes. The proposed procedure relies on distance ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017